Curriculum Matters
State Educational Requirements: Expectation and Reality
Absract. The application in school practice of the State Educational Requirements and the Programme of study for 10th form, compulsory level, in Chemistry and Environmental Protection school subject has been evaluated. 10th form pupils’ achievements have been assessed by a test. The test is administered to three hundred 10th formers from a few Bulgarian regions and different types of secondary schools. The test results reveal that less than 9% of students meet more than 80% of the expected attainment outcomes. The same percentage of students fails to achieve 20% of the requirements. These alarming facts should be used by educators and policymakers to make important decisions when examining possible changes to improve the State Educational Requirements and Programmes of study.
Keywords: secondary education, chemistry education, educational standards, educational goals, evaluation, achievement test
References:
1. Boiadjieva, E., M. Kirova, A. Kuzmanov, A. Tafrova-Grigorova. Educational Goals аnd Тheir Importance in Achievement Test Construction. Chemistry 17, 339-358 (2008) [In Bulgarian].
2. Boiadjieva, E., M. Kirova, A. Tafrova-Grigorova. On the Application of The State Core Curricula Requirements and the Programme of Study of Chemistry and Environmental Protection in the 10th Form of the Secondary School. Chemistry 17, 6-15 (2008) [In Bulgarian].
3. Cronbach, L. J. Test Validation. In: Thorndike, R. L. (Ed.) Educational Measurment (2nd Edition). American Council of Education, Washington, 1971.
4. Петрова, С., Н. Василева. Природните науки, училището и утрешният свят. Резултати от участието на България в Програмата за международно оценяване на учениците – PISA 2006 .ЦКОКО, София, 2007 ISBN 978-954-8973-12-0
A. Tafrova-Grigorova, M. Kirova, E. Boiadjieva, A. Kuzmanov
Teaching Efficiency
Development of Educational-and-Cognitive Modeling Competence: A Case Study – Chemistry Learning in High Schools
Absract. The application of the competence-based approach in education requires the basic educational competences to be determined. This paper presents a project and technology for the development of one of the major transversal (portable) competences, that of educational-and-cognitive modeling. A survey on the application of technology for development of this competence in the process of learning chemistry in the secondary school is presented and discussed.
Keywords: educational-and-cognitive modeling competence, project for development, didactic technology
References:
1. Мерджанова, Я. Мултисензорният принцип в обучението и живота. Университетско издателство „Св. Климент Охридски”, София, 2005.
2. Василев, В., Й. Димова, Т. Коларова-Кънчева. Рефлексия и обучение. Макрос, Пловдив, 2005.
3. Brooks, J.C., M.G. Brooks. In Search of Understanding: The Case for Constructivist Classrooms. Association for Supervision and Curriculum Development, Alexandria, 1993.
4. Toshev, B.V. The Successful Teacher: Historical Review with Some Practical Recommendations. Chemistry 16, 473-481 (2007) [In Bulgarian].
5. Радев, П. Обща училищна дидактика. Университеско издателство „Паисий Хилендарски”, Пловдив, 2005.
6. Ганчев, Г. Моделирането в обучението по химия. Институт за усъвършенстване на учителите, Стара Загора, 1993.
7. Ганчев, Г., Е. Гергова. Тестът по химия. Палмира, Казанлък, 1998.
8. Тафрова-Григорова, А. Съставяне на тестове. Приложено към обучението по химия. Педагог 6, София, 2007.
N. Tzankov
Problems
40th International Chemistry Olympiad: Problems and Solutions
Absract. The paper represents problems (theoretical and practical) of the 40th International Chemistry Olympiad and the solutions of theoretical problems. Comments of Bulgarian team presentation are given.
Keywords: International Chemistry Olympiad (IChO), practical exams, problems with solutions
D. Tasheva, P. Tsanova
From the Research Laboratories
Simple Way to Predict Electrostatic Sensitivity of Nitroaromatic Compounds
Absract. In this paper, a new simple method is introduced to predict electrostatic sensitivity of nitroaromatic compounds. This technique uses the calculated detonation velocity at maximum nominal density and the contribution of some structural parameters. A training set is used to optimize the new correlation. The predicted results for 17 explosives are also compared with quantum mechanical computations, for some explosives in which deviations of quantum mechanical calculations from experimental data are low. The root mean square deviations (rms) from experiment for introduced model and complicated quantum mechanical computation are the same, i.e. 2.0 J.
Keywords: electrostatic sensitivity, nitroaromatic, detonation velocity, correlation
References:
1. Keshavarz, M.H., H.R. Pouretedal. Predicting Denotation Velocity of Ideal and Less Ideal Explosives via Specific Impulse. Indian J. Eng. Mater. Sci. 11, 429-432 (2004).
2. Keshavarz, M.H. Prediction of Detonation Velocities of Non-metal Nitrated Explosives by Simple Method. Asian J. Chem. 17, 2223-2228 (2008).
3. Keshavarz, M.H., H.R. Pouretedal. Predicting Detonation Velocities of CHNO Explosives by Simple Method. Propellants, Explosives, Pyrotechnics 30, 105-108 (2005).
4. Keshavarz, M.H. New Method for Predicting Detonation Velocities of Aluminized Explosives. Combustion & Flame 142, 303-307 (2005).
5. Keshavarz, M.H. A Simple Approach for Determining Detonation Velocity of High Explosive at Any Loading Density. J. Hazardous Materials A 121, 31-36 (2005).
6. Keshavarz, M.H., R.T. Mofrad, R.F. Alamdari, M.H. Moghadas, A.R. Mostofizadeh, H. Sadeghi. Velocity of Detonation at Any Initial Density without Using Heat of Formation of Explosives. J. Hazardous Materials A 137, 1328-1332 (2006).
7. Keshavarz, M.H., H.R. Pouretedal. Estimation of Detonation Velocity of CHNOFCl Explosives. High Temperatures – High Pressures 35/36, 593-600 (2003/2007).
8. Zeman, S., P. Valenta, V. Zeman. Electric Spark Sensitivity of Polynitro Compounds: A Comparison of Some Authors’ Results. HanNeng CaiLiao 6, 118-122 (1998).
9. Zeman, S., J. Koči. Electric Spark Sensitivity of Polynitro Compounds: Part IV. A Relation to Thermal Decomposition Parameters. HanNeng CaiLiao 8, 18-26 (2000).
10. Zeman, V., J. Koči, S. Zeman. Electric Spark Sensitivity of Polynitro Compounds: Part II. A Correlation with Detonation Velocity of Some Polynitro Arenes. HanNeng CaiLiao 7, 127-132 (1999).
11. Zeman, V., J. Koči, S. Zeman. Electric Spark Sensitivity of Polynitro Compounds: Part III. A Correlation with Denotation Velocity of Some Nitramines. HanNeng CaiLiao 7, 172-175 (1999).
12. Seman, S. The Relationship between Differential Thermal Analysis Data and the Characteristics of Polynitroaromatic Compounds. Thermochimica Acta 41, 199-207 (1980).
13. Wang, G., X. Xiao, H. Ju, X. Gong. Detonation Velocities and Pressures, and Their Relationships with Electric Spark Sensitivities of Nitramines. Propellants, Explosives, Pyrotechnics 31, 102-109 (2006).
14. Wang, G., X. Xiao, H. Ju, X. Gong. Calculation of Denotation Velocity, Pressure and Electric Sensitivity of Nitro Arenes Based on Quantum Chemistry. Propellants, Explosives, Pyrotechnics 31, 361-368 (2006).
15. Kamlet, M.J., S.J. Jacobs. Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C-H-N-O Explosives. J. Chem. Phys. 48, 23-35 (1968).
16. Keshavarz, M.H. Detonation Velocity of Pure and Mixed CHNO Explosives at Maximum Nominal Density. J. Hazardous Materials A 141, 536-539 (2007).
17. Keshavarz, M.H., M. Jaafari. Investigation of the Various Structure Parameters for Predicting Impact Sensitivity of Energetic Molecules via Artificial Neural Network. Propellants, Explosives, Pyrotechnics 31, 216-225 (2006).
18. Storm, C.B., J.R. Stine, J.F. Kramer. Sensitivity Relationships in Energetic Materials (pp. 605-640). In.: Bulusu, S.N. (Ed.). Chemistry and Physics of Energetic Materials. Kluwer, Dordrecht, 1990.
19. Price, D. Examination of Some Proposed Relations among HE Sensitivity Data. J. Energetic Materials 3, 239-254 (1985).
20. Owens, F.J., K. Jayasuriya, L. Abrahmsen, P. Politzer. Computational Analysis of Some Properties Associated with the Nitro Groups in Polynitroaromatic Molecules. Chem. Phys. Lett. 116, 434-438 (1985).
21. Keshavarz, M.H., H. Motamedoshariati, H.R. Pouretedal, M.K. Tehrani, A. Semnani. Prediction of Shock Sensitivity of Explosives Based on Small Scale Gap Test. J. Hazardous Materials A 145, 109-112 (2007).
22. Keshavarz, M.H., H.R. Pouretedal, M.K. Tehrani, A. Semnani. Prediction of Shock Sensitivity of Energetic Compounds. Asian J. Chem. 20, 1032-1038 (2008).
23. Auzenau, M., M. Roux. Electric Spark and ESD Sensitivity of Reactive Solids. Part II: Energy Transfer Mechanism and Comprehensive Study on E50. Propellants, Explosives, Pyrotechnics 20, 99-101 (1995).
24. Skinner, D., D. Olson, A. Block-Bolten. Electrostatic Discharge Ignition of Energetic Materials. Propellants, Explosives, Pyrotechnics 23, 34-42 (1997).
25. Hosoya, F., K. Shiino, K. Itabashi. Electric Spark Sensitivity of Heat Resistant Polynitroaromatic Compounds. Propellants, Explosives, Pyrotechnics 16, 119-122 (1991).
26. Palm III, W.J. Matlab for Engineering Applications. WBC, McCraw-Hill, 1999, p. 339 and p. 227.
27. Keshavarz, M.H. Theoretical Prediction of Electric Spark Sensitivity of Nitroaromatic Energetic Compounds Based on Molecular Structure. J. Hazardous Materials A 153, 201-206 (2008).
28. Kamlet, M.J. The Relationship of Impact Sensitivity with Structure of Organic High Explosives: I. Polynitroaliphatic Explosives. Proceedings 6th Symposium (International) on Detonation. Washington, 24-27 August 1976, p. 312.
29. Kamlet, M.J., H.G. Adolph. The Relationship of Impact Sensitivity with Structure of Organic High Explosives. II. Polynitroaromatic Explosives. Propellants, Explosives, Pyrotechnics 4, 30-34 (1979).
30. Keshavarz, M.H., H.R. Pouretedal. Simple Empirical Method for Prediction of Impact Sensitivity of Selected Class of Explosives. J. Hazardous Materials A 124, 27-33 (2005).
31. Keshabarz, M.H., H.R. Pouretedal, A. Semnani. Novel Correlation for Predicting Impact Sensitivity of Nitroheterocuclic Energetic Molecules. J. Hazardous Materials A 141, 803-807 (2007).
32. Keshavarz, M.H. Prediction of Impact Sensitivity of Nitroaliphatic, Nitroaliphatic Containing Other Functional Groups and Nitrate Explosives. J. Hazardous Materials A 148, 648-652 (2007).
33. Zeman, S. Kinetic Compensation Effect and Thermolysis Mechanisms of Organic Polynitroso and Polynitro Compounds. Thermochimica Acta 290, 199-217 (1997).
34. Zeman, S. Kinetic Data from Low-Temperature Thermolysis in the Study of the Microscopic Initiation Mechanism of the Detonation of Organic Polynitro Compounds. Thermochimica Acta 49, 219-246 (1981).
35. Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods I. Method. J. Comput. Chem. 10, 209-264 (1989).
36. Frish, M.J., G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, R.E. Statmann, J.C. Burant, S. Daprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Gammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Peterson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Oritz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzales, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, J.L. Andrs, M. Head-Gordon, E.S. Replogle, J.A. Pople. Caussian 98, Gaussian Corp., Pittsburgh, 1998.
37. Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 98, 5648-5652 (1993).
38. Lee, C., W. Yang, R.G. Parr. Development of Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 37, 785-789 (1998).
M.H. Keshavarz, H.R. Pouretedal, A. Semnani
Log in to read the full text